产品中心
产品详情
所在位置: 首页> 产品目录> Ossila> 材料>
  • 产品名称:Ossila材料MAI

  • 产品型号:
  • 产品厂商:Ossila
  • 产品文档:
你添加了1件商品 查看购物车
简单介绍:
Methylammonium Iodide (MAI)
详情介绍:
Methylammonium iodide (MAI) photo
Methylammonium Iodide (MAI) powder

Specifications

Chemical formula CH6IN
Synonyms Methylamine hydroiodide
CAS No. 14965-49-2
Chemical name Methylammonium iodide
Physical appearance White, crystalline solid
Purification method Recrystallisation (ethanol)
Purity >99.9% (as measured by elemental analysis)
Molecular weight 158.97 g/mol
Recommended solvents for perovskite synthesis DMF, DMSO

Chemical Structure

Methyl-ammonium iodide (MAI) chemical structure
Methylammonium Iodide (MAI) chemical structure

NMR spectrum

MAI 1H-NMR spectrum
1H NMR spectrum of methylammonium iodide in DMSO (500 MHz). The peaks centred around 2.5 and 3.3 ppm are residual DMSO and water impurities respectively from the deuterated NMR solvent. (Click the image for a larger version)

Usage details


Reference devices - perovskite PVs

Reference devices were made to assess the performance of perovskite (MAI:PbCl2) based devices with the below structure. These were fabricated in air prior to spincasting the fullerene layer in a N2 glove box. Substrates were then transferred to a vacuum chamber where a composite metal cathode was thermally evaporated. Finally, substrates were encapsulated inside the glove box before measurements were taken under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / MAI:PbCl2 / PC70BM / Ca (5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

The perovskite solution (MAI:PbCl2 at a molar ratio of 3:1) was made in dimethylformamide (DMF) at a concentration of 664 mg/ml. It was found to be critical that both materials were mixed dry prior to adding the solvent in order to achieve such high concentration.

For maximum efficiency, the active layer thickness was achieved from spin casting the heated solution (70°C) onto a hot PEDOT:PSS substrate (90°C) at a spin speed of 5000 rpm for 30s. The films were then placed back onto the hotplate (90°C) for 2 hrs. The data below shows the maximum performance achieved from non-optimised conditions.

Overall, the average efficiency after 5 mins light soaking was 8.89% (9.57% maximum) from MAI:PbCl2 based devices. Hysteresis was observed to be quite significant, with sweeps running from positive to negative bias presenting the best efficiencies (hereby referred to as reverse sweeps).

I101 perovskite ink J-V curve
JV curve under AM1.5 irradiation for a PV device based on MAI perovskite ink. Device characteristics were recorded on a reverse sweep.
I101 perovskite ink efficiency histogram
Distribution in device efficiencies recorded for a typical process run. Data taken from 5 substrates containing 30 pixels. 10 pixels having low operational efficiency resulting from their proximity to the edge of the device substrate were removed from this analysis.

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S171) or Photovoltaic (8 Pixel) Substrates
  • 5 minutes sonication in hot 1% Hellmanex III
  • 1x boiling DI dump rinse, 1x cold dump rinse
  • 5 minutes sonication in warm IPA
  • 2x DI cold dump rinse
  • Stored in DI for 1hr
  • 5 minutes sonication in hot 10% NaOH solution
  • 2x DI dump rinse
  • N2 blow dry

PEDOT:PSS

  • PEDOT:PSS (Ossila M121 AI4083) filtered through a 0.45 µm PES filter (C2009S1)
  • Spin on heated substrates at 6000 rpm for 30s
  • Bake at 130°C after spin cast
  • Note that the cathode strip was not wiped clean, this is to allow a consistent perovskite layer on top
  • Substrates held at a temperature of 90°C for spin casting

Active layer solution

  • Old stock solution (2 weeks old) of MAI:PbCl2 (3:1 molar ratio) made at a concentration 664 mg/ml in DMF
    • Heated for approx. 3 hrs at 70°C
  • Old stock solution of PC70BM, 50 mg/ml in CB
    • Heated for approx. 4 hrs at 70°C with stir bar

Active layers

  • Devices spun onto hot substrate at 5000 rpm using 25 µl dynamic dispense for 30s
  • Placed immediately onto hotplate at 90°C for 2 hrs
  • Cathode wipe with dry cotton bud once all substrates were spun
  • Films started with a bright yellow colour
  • Changed to a dark grey colour during thermal annealing process
  • Transferred to a N2 glove box
  • PCBM layer was spun at 1000 rpm for 30s, 20 µl dynamic dispense
  • CB cathode wipe

Evaporation

Left in vacuum chamber overnight and evaporated with the below parameters.

  • 5 nm Ca at 0.2 Å/s
  • 100 nm Al at 1.5 Å/s
  • Deposition pressure 1e-6 mbar

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with source-meter
  • Illumination by solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 23°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing : 25°C
  • Room temperature at end of testing: 25°C
  • Calibrated aperture mask size: 0.256 mm2

We are continuously studying MAI and perovskites and expect to provide you with further information and optimised fabrication guides as we do so. Check back regularly or subscribe to our email newsletter for updates. In the meantime, please contact us if you have any further questions.


姓名:
电话:
您的需求: